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Systems with aftereffect, the state of which is given by non-linear Volterra-type integro-differential equations with small 
perturbations, are investigated. The question of the existence of limit periodic motions in such systems is considered, assuming 
that the linearized unperturbed system is asymptotically stable and that the perturbations, and also the non-linear terms, contain 
functions of time, which tend exponentially to periodic functions. The limit periodic motions of a rigid plate (the model of a 
wing) when there is an unsteady air flow about it are considered as an example. © 2004 Elsevier Ltd. All rights reserved. 

1. L I M I T  P E R I O D I C  M O T I O N S  

We will consider  a system with aftereffect, described by the following Volterra integro-differential  
equat ion 

t 

dx = A x  + ~ K ( t  - s)x(s)ds + F(x, y, z, t) + ~t(~(t) + Dl( t )x  + D2(t)y + D3(t)z ) 
dt o (1.1) 

x , y , z ~  R n, x = col(x I . . . . .  xn) 

in which A is a constant  n x n matrix, O(t) = Op(t) + De(t ) is a vector  function which is cont inuous  
+ 

when t e R , where  Op(t) is its periodic par t  • @p(t + T) = • (t) and tI)e(t ) --'-) 0 exponential ly as • p 

t ---) + ~ ,  ~t > 0 is a small parameter ,  Di(t ) = Dip(t ) + Die(t ) (t = 1, 2, 3) are matrices with elements  
+ 1 similar to @(t), and F(x,y, z, t) is a function, cont inuous in t ~ R , belonging to the class C with respect  

to x, y, z f rom a certain ne ighbourhood  

n(x,  y, z) = {x, y, z ~ gn: Ilxll, IlYlI, Ilzll < 81) 

The cont inuous  n x n matrix K(t) is specified when t > 0 and satisfies the inequality 

IIg(t)ll <- C 'exp(-13't), C', 13', P' = const, C' > 0, 13' > 0, 0 < P' < 1 (1.2) 
t 9' 

In Eq. (1.1) 

t 

y = ~ k ( t -  s )~(x(s) ,  s)ds 
o 

(1.3) 
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and z is an analytic functional in the form of an absolutely convergent Frechet series 

n t t 

Z(t) = Z Z ~'"~ Kj(k)(t-sl ..... t-Sk)Xjl(Sl)"'Xjk(Sk)dSl'"dSk 
k = l j ( k ) = l O  0 

j ( k )  = Ji . . . . .  Jk 

(1.4) 

where k( t  - s) is a continuous n × n matrix function, specified in the set 

J~ = {(t , s )~  R2:0<s<t<+**}  

while the continuous vector functions K j(k) (t - Sl, . . . ,  t - sk) are specified in the set 

J~ = {(t ,s  1 . . . . .  sk)~ R k + l : 0 < s j < t < + o o ,  j =  1 . . . . .  k }  

1 The vector function (p(x, t) ((p(0, t) - 0) of the class C with respect to x in a certain neighbourhood 
B'(x)  = {x ~ Rn: IIxll < 61) is also continuous and bounded with respect to t when t ~ R ~-. 

We will assume that the integral kernels k(t  - s ) ,  K j(k) (t - S l ,  . . . ,  t - s k )  satisfy the following inequalities 

Ilk(t- s)ll - c exp(-13(t - s)) (1.5) 
( t -  s) p° 

t, (-'~'I,.TtS p ) tj = t -S j  (1.6) 

in which C > 0, 13 > 0, 13j > 0 (j = 1, . . . ,  k), 0 < P0 < 1, 0 < p < 1 are constants, and a number I]0 exists 
such that 0 < [30 --- 13j for all permissible j and k. 

As regards the non-linear vector functions ~0(x, t) = col(cpl . . . . .  ¢Pn), F(x,  y, z, t) = col(F1 . . . . .  Fn) in 
Eq. (1.1) and the representation (1.3), we will assume that the Lyapunov majorants [1] 

¢p*(u) = col(q~* . . . . .  ~p*), F*(u,  v, w) = col(F~ . . . . .  F*) 

are constructed for them, and that these majorants satisfy the following inequalities for arbitrary e such 
that 0 _< e ___ 1: 

q)*(eu)<eq~*(u) ,  u ~  B ' (u) ,  i = 1 . . . . .  n 

F*(eu ,  e l~ , ew)<El+SFi (u ,  19, w) ,  8 > 0 ,  (u, D , w ) ~  B(u,  l~,w) 
(1.7) 

The terms of Eq. (1.1) containing the parameter IX will be regarded as the perturbation; in this case, 
if non-linear terms are present in the perturbation we will assume that they relate to the function 
F(x,  y, z, t). 

Note that in [2] it was proposed to use Volterra functionals of the form (1.4) in the mechanics of 
deformable bodies to describe the rheological properties of materials, thereby expressing the relation 
between the stress and the strain. Singularities of the form (1.2), (1.5) and (1.6) appeared, in particular, 
in integral kernels, characterizing the properties of such materials as, for example, polymers [3, 4]. 

Definitions. We will say that the continuous function x(t), defined for t e R ÷, is exponentially limi t 
periodic if it can be represented in the form 

x ( t )  = xp( t )  + Xe(t ) (1.8) 

where Xp(t) is a periodic function with period T > 0, and the function Xe(t) is such that Xe(t ) ----> 0 as 
t ---> + ~ ,  where 

IlXe(t)ll <~ C"exp(-a't), C"> 0, a '>  0 (1.9) 

We will denote the class of such functions by lpe(T, -~ ' ) .  
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We will also call the motion described by the function x(t), limit periodic, ifx(t) ~ lpe(T, -ix'). 
The class of functions Xe(t), which satisfy inequality (1.9), will be denoted by el(-tx'). 
In a similar way, if the continuous function K(tl,  . . . ,  tk) (tj = t - sj), specified in the set J'k, satisfies 

inequality (1.6) when 0 < [i0 < 13j (j = 1, . . . ,  k), we will relate it to the class ek('~o). 
Hence, the functions q~(t) and Di(t ) in Eq. (1.1), which occur in the persistent perturbation, are functions 

that are exponentially limit periodic and ~(t), Di(t ) ~ lpe(T, -[3") (i = 1, 2, 3) for certain 13" > 0. Then, the 
periodic parts, ~p(t) and Dip(t), of the functions ~(t) and Di(t) are bounded functions for t ~ R +, so that 

U p(t)ll, IlDip(t)[I < = const  > 0 (1 .10)  

We will now refine the properties of the vectors q)(x, t), F(x, y, z, t) as functions of the variable t. We 
will assume that for all fixed x ~ B'(x) or (x, y, z) ~ B(x, y, z) the inclusion q)(t) ~ lpe(T, -[30) holds or 
F(x,y ,  z, t) ~ lpe(T, -13 °) ([3 ° > 0) respectively, i.e. by equality (1.8) we have the representations 

9(x,  t) = 9p(x, t) + q)e(x, t), F(x, y, z, t) = Fp(x, y, z, t) + Fe(x, y, z, t) (1.11) 

We will investigate the structure of the general solution of Eq. (1.1), (1.3), (1.4) in the neighbourhood 
of the point x = 0 assuming that the unperturbed linear homogeneous equation with the lower limit 
of integration s, corresponding to (1.1), possesses the fundamental matrix X(t - s )  (X(0) = En), subject 
to the inequality 

IIX(t- s)ll -< Cexp(-o~(t-  s)), C, ct = const > 0 (1.12) 

i.e. the zeroth solution of the linearized homogeneous equation for Eq. (1.1) is asymptotically stable. 
We will consider the problem of the existence of limit periodic solutions of Eq. (1.1), (1.3), (1.4) with 
initial conditionx0 = x(0) ~ B"(Xo) ~ B'(xo). Note that, with the above assumptions (1.5)-(1.7) and (1.12), 
Eq. (1.1)-(1.4) is such that the point x = 0 is totally stable under persistent perturbations [5]. 

Theorem. Suppose the conditions of continuity or smoothness of the functions mentioned above 
are satisfied, and the functions occurring in the small perturbation satisfy the inclusion q)(t), Di(t ) E 
lpe(T, [3'~) ([l" 0), and also for each fixed (x, y, z) ~ B(x, y, z), the property 9(x, t), F(x, y, z, t) 
lpe(r,  -[3 o) ( 13 ° > > 0) holds. Suppose inequalities (1.2), (1.5), (1.6) and (1.12) holds, and Lyapunov 
majorants tp*(x), F*(x, y, z), which satisfy relations (1.7), exist. 

Then 8 > 0 exists such that the general solution of Eq. (1.1), (1.3), (1.4) x(t, Xo, ~t) ~ lpe(T, -Y) for 
certain y > 0 when IIx011 < ~, ~t < ~, i.e. this solution can be represented in the form 

x(t, x o, It) = xp(t, It) + x,(t ,  x o, I.t) (1.13) 

where Xp(t, kt) is a periodic solution of the equation 

dx = Ax + f K(s )x ( t  - s)ds + Fp(x, y, z, t) + ~t(q~p(t) + Dlp( t )x  + D2p(t)y + Dap(t)z ) 
dt  

0 

y(t) = f k ( s ) tpp (X( t -  s), t -  s)ds (1.14) 
0 

ll o o  o o  

Z(') = Y~ ~ I . . . IKJ(k ' ( s l  . . . . .  S k )X j , ( t - s , ) . . . x j k ( t - s k )d s , . . . d s  k 
k = l j ( k ) = l o  0 

and Fp(x, y, z, t) and tpp(x(t), t) are the parts of the functions F(x, y, z, t) and <p(x(t), t) that are periodic 
in t in their representations (1.11). 

Proof. We will construct the general solution of Eq. (1.1), (1.3), (1.4) in the neighbourhood of zero 
by the method of successive approximations, using for this purpose the integral equation 

t 

x(t)  = X( t )x  0 + I X ( t -  s ) (F(x(s) ,  y(s),  Z(S), s) + 
0 (1.15) 

+ p.(dP(s) + Dl ( s )x ( s  ) + D2(s)y(s  ) + D3(s)z(s))ds 
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which is equivalent to Eq. (1.1) together with the initial condition x(0) = x0, and the integral 
representations (1.3) and (1.4). 

Suppose x(k)(t), y(k)(t), Z(k)(t) (k = 1, 2 . . . .  ) are successive approximations, obtained from formulae 
(1.15), (1.3) and (1.4) by substituting relation (1.15), obtained in the previous step of the calculations 
of the quantities x (k- 1)(0,y(k- 1)(t) ' z(k- 1)(t) ' into the right-hand side of relation (1.15), and the quantities 
x(k)(t) into the right-hand sides of relations (1.3) and (1.4), where we assume that 

t 

xO)(t) = X(t)x o + l x fX ( t -  s)~(s)ds (1.16) 
0 

We will denote the integral term in (1.16) by XO)(t) and convert it, taking into account the structure 
of ~(t),  to the form 

t 

XO)(t) = IxIX(s)(dPp(t-s ) + dP~(t-s))ds = ~O)(t)+ XO)(t) 
0 

where 

¥(~)(t) = Ix f X(s),IJp(t- s)ds 
0 

oo t 

Ztl)(t) = - p.f X ( s )~p ( t -  s)ds + Ilf X ( s )~e ( t -  s)ds 
t 0 

(1.17) 

We will analyse the properties of functions (1.17). We have 

ytl)( t  + T) = ~t fX(s)~e(t  + T -  s)ds = pfX(s)dPp(t-  s)ds = ¥°)( t )  (1.18) 
0 0 

i.e. WO)(t) is a periodic function. For the vector function Z(1)(t), taking into account the fact that 
O(t) e lpe(T, -13") and, consequently, inequalities of the type (1.9), (1.10) and also (1.12) are satisfied, 
we obtain the limit 

Ilz")(t)l[ < ~tc Cl exp(-as)ds + C" exp( - l~s )exp( -~"( t -  s))ds = 
" t 0 (1.19) 

Cl C" 
= laC[---exp(-at)L~ + ~,-7-~_ ~(exp(-txt)  - exp(-~"t))]  

When obtaining inequality (1.19) we assumed tx ¢ ~" for the sake of uniformity of estimation. This 
can always be achieved by changing one of the constants, for example, t~, retaining the inequality of 
the form (1.12). We will put 0 < )' < min(tx, 13, [30, 13°, ~"); then, by inequality (1.19), ZO)(t) ~ el(-), ) 
and, since X(t) ~ el(-tx), we obtain from relations (1.16), (1.18) and (1.19) 

x°)(t) ~ lpe(T, -7)  (1.20) 

Consequently, if xO)(t) = col(x~l)(t) . . . . .  Xn(1)(t)), we can assume that 

= c o n s t ,  i :  1 . . . . .  n 

Consider the vector function yO)(t), which, by relations (1.3), (1.11) and (1.20), can be written as 
follows: 

t 

y ( l ) ( [ )  = f k ( t _ $ ) ~ ( x ( p l ) ( $ ) + x ~ l ) ( $ ) , $ ) d $  ~- y ( p l ) ( t ) +  g(ei)(t) 

o 
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where 

Y~l'(t) = ~k ( s )9 . ( x (p l ' ( t - s ) , t - s )d s  
0 

Y(el)(t) = -Ik(s)q)p(x(pi)(t- s), t -  s)ds + (1.21) 
t 

t 
+ 

0 

The function y(ll(t), specified by the convergent integral for t ~ R +, like the function ~t(al(t) (1.17), , . iv • 
is also periodic with period T. 

We will show that Y~l)(t) ~ el(-~') for certain 3,' > O. 
In fact, the function 

~k(s)gp(xt l)( t  - s), t - s)ds (1.22) 
t 

which is continuous and bounded as t ---> + 0% decreases exponentially and approaches zero as t ---> +o% 
and, in view of inequality (1.5), belongs to the class e1(-13). Using the Lipschitz condition for the function 
(p(x, t) when x ~ B'(x), we estimate the integral 

t 

l ( t)  fk (s )[9(x(p l ) ( t - s )+ O)¢t s), xO)tt s ,  = x ,  , - t - s ) - g p (  p , - ) t - s ) ] d s  
0 

We have 

[[l(t)[[ '; k ( s ) [gp (x (p l ) ( t - s )+x (~ ' ) ( t - s ) , t - s ) -q )p (x~ l ) ( t - s ) , t - s ) ]d s  

[[i (P ( e l ) ( t - s ) ' t - s ) d s l l <  + k(s)(p~(x " ( t -  s) + x 

t t 

<-- CL~[[k($)ll X(el'( t -   )llds ÷ c'Illk(s)l) 
0 0 

+ 

(1.23) 

t 

_< + I 
0 $ 

where CL > 0 is the Lipschitz constant, Co > 0 is the constant in an inequality of the type (1.9) for the 
function Xe(1)(t) and C' > 0 is an analogous constant for the function %(x, t) for all x ~ B'(x). Splitting 
the integral in the last of inequalities (1.23) into two parts with limits of integration 0 and 1, and also 
1 and t, we obtain an estimate of the type (1.9). Consequently Y~l)(t) e e1(-7) andy0)(t) e lpe(T, -7). 

We will analyse the structure of the vector function z(1)(t), which is the series (1.4), in Which the 
functions xi(s ) take the values x)l)(s). We will denote the term of this series with the superscriptj(k) by 
IJ(k)(t) and show that IY(k)(t) ~ lpe(T, -y), i.e. IJ(k)(t) = IJp(k)(t) + IJe(k)(t). We will represent the function 

t t 
(1) lj(k)(t) ~...~KJtk)(, Sl . . . . .  t_sk)(xj ,p(Sl)+X~l~(sl)) . .  (1) (1, = _ .(XAp(Sk) + xjk,(sk))dsl . . .ds k 

0 0 

in the form of the sum of the functions 
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t ! 

(1)it_ -O),-_sk)dsl . . .dsk C ' ( ' ) - -  . . . . .  
o 0 

l{(k)(t) = lY(k)(t)-zJp(k)(t) 

The periodicity of the first of these is obvious, while the propertylYe(k)(t) • ei(-y) establishes the same 
property of the function Y~l)(t) (1.21), since when estimating the function IJ(kY(t), the multiple integrals 
occurring in it transform, in view of inequality (1.6), in the product of multiple integrals of the form 
(1.22) and differences of the integrals, which occur in the upper row of inequality (1.23). Hence, the 
proof of this property is carried out in a similar way. Thus, the series z(a)(t) • lpe(T, -y). 

In the second approximation, the functions x(2)(t), y(2)(t) and z(2)(t) are given by the relation 

t 

x(2)(t) = X(t)x  0 + f X ( t -  s)[l.t(~(s ) + Di(s)x(I)(s) + 
0 (1.24) 

+ D2(s)yO)(s) + D3(s)zO)(s)) + F(xO)(s),yO)(s), zO)(s), s)]ds 

which follows from formula (1.15), and relations (1.3) and (1.4), on the right-hand sides of which we 
put x(t) = x(Z)(t). Since the function F(x, y, z, t) is exponentially limit periodic in t for fixed x, y, z and 
x(1)(t),yO)(t), zOO(t) e lpe(T, -y), the function F(x(1)(t),y(1)(t), z(1)(t), t) will be exponentially limit periodic, 
as also the functions O(t) and Di(t ). Hence, repeating the previous discussions, it can be shown that 
x(2)(t),y(2)(t), z(2)(t) • lpe(T, -y). By virtue of the properties of the function F, the integral operator on 
the right-hand side of relation (1.24) will be compressive. 

In a similar way, in the general case, one can establish the property of the functions x(k)(t), y(k)(t), 
z(k)(t) • lpe(T, -y), ifx (k- l)(t),y(k- 1)(t), z (k- 1)(t) • lpe(T, -y) for certain y > 0. It was shown in [5, Theorem 
2] that the successive apprordmationsx(k)(t),y(k)(t) and z(k~(t) converge when I lx0[I < 6, Ix < 5 for certain 
5 > 0 to the functions x(t), y(t) and z(t) respectively, which are the solution of Eq. (1.1), (1.3), (1.4). 
This is established by constructing the majorizing equation for 

u(x O, IX) >> x(t, Xo, Ix), l~(Xo, IX) >> y(t, Xo, It), W(Xo, It) >> z(t, x O, IX) 

where 

u(x o, p.) = lim utk)(Xo, Ix), u(x  o, ~t) = lim vtk)(x0, IX), W(Xo, ltt)= lim wfk)(x0, IX) 
k ---I, +oo  k " ~  + no k ---~ + ~  

and u (k), v (k) and w (k) are majorizing sequences for x(k)(t, x0, IX), y(k)(t, x0, Ix) and Z(k)(t, x0, Ix). The last 
functions belong to the class lpe(T, -y) and, as follows from the construction of the successive 
approximations XCp k), y(pk) and z(p k), the periodic functions x,(t, Ix), yp(t, Ix) and Zp(t, Ix) are a solution of 
Eq. (1.14) whenx0 = 0 and Ix < 5, while the solution itseffx(t, x0, IX) is represented in the form (1.13). 

It should be noted that the periodic solutions of Volterra type integro-differential equations with infinite after- 
effect, to which Eq. (1.14) belongs, have been considered in many publications (see, for example, [4-9]). In [7], where 
general problems of the theory of periodic solutions were considered and particular equations relating to certain 
applications were investigated, there is a considerable bibliography on this problem. An investigation has been carried 
out on periodic solutions for integro-differential equations with an upper limit of integration in the form of periodic 
functions in [8]. It was suggested in [6, 7] that periodic solutions can be represented by Fourier series. The proof 
of the convergence of the successive approximations was based on the method of majorizing equations in [6]. 

2. L I M I T  P E R I O D I C  M O T I O N S  OF A W I N G  

We will consider the problem of the rotational motion of a wing (a thin rigid plate) around a longitudinal 
horizontal axis when there is an unsteady air flow about it [10]. We will carry out the investigation using 
the model of unsteady flow proposed by Belotserkovskii [11], based on the introduction of integral terms 
into the expressions for the aerodynamic forces and their moments acting on the wing. 

We will denote the angle of rotation of the plate by O, measured from the horizontal fixed axis OXl 
in the vertical plane (see Figure 1). Figure 1 shows a section of the wing by a vertical plane passing 
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Y Yll x 

Fig. 1 

V 

Xl 

through the centre of mass C of the wing. The point C has coordinates x0, Y0 in a system of coordinates 
Oxy, permanently connected with the plate. The unperturbed flow is directed horizontally and has 
constant velocity V0 parallel to the Oxl axis. Viscoelastic forces, which, it can be assumed, are produced 
by a viscoelastic spring, act on the mounting of the wing. The moment of these forces is perpendicular 
to the vertical plane Oxf f l  and has a value L. We will represent the relation between L and the angle 
O, characterizing the deformation of the spring, by a functional in the form of a Volterra-Frechet series 
[2, 3] of the type (1.4), assuming that the moment only changes sign when the sign of the deformation 
O' = O0 + O changes 

t 

L = - 10' + f L ' ( t  - s )O ' ( s )d s  + 

0 

t i t  (2.1) 
fffL(3'(t  - s 1, t -  S2' t -  s3)O' (S l )O' ( s2)O' (s3)ds lds2ds  3 + ... + 

000 

where I is the modulus of elasticity for torsion, O' is the total deformation of the spring and the constant 
O0 is chosen so that the value 0 = 0 is the equilibrium position of the plate under steady flow when the 
spring has no rheological properties. The kernels of the relaxation L ' ( t )  and L (k) (tl, ... , tk) (k  = 
3, 5 . . . .  ) in representation (2.1) are continuous functions which satisfy inequality (1.6). 

We will assume that the angle of attack (the angle between the plane of the wing and the vector of 
the relative velocity of the flow at the point A of the leading edge) is expressed in terms of the angle 
O. Then the moment M of the aerodynamic forces acting on the wing in the case of steady flow [11, 10] 
can be written by separating out in explicit form the non-linear terms up to the third order inclusive, 

t 

M rnll~ m,O 3 m,,O 3 = m o + + m 2 0  + + + I l l ( t -  s);O(s)ds + 

0 
, (2 .2)  

+ f l 2 ( t -  s ) O ( s ) d s  + / l ( t ) O ( 0 )  + 12(t)O(0) + M' 
0 

where rn0, ml, m2, m '  and m" are constants, and the functions Ii(t), I2(t) ~ C 1 and M' are non-linear 
terms of higher than the third order. 

The velocity V of the unperturbed flow will be assumed to be directed along the vector V0 and we 
will also assume that the algebraic values V and I10 of these vectors are connected by the relation 

V = V o + Ixu(t)  (2.3) 

where Ix < 1 and ~(t) is a continuous function of the class lpe(T, -7) (7 > 0). 
For the perturbed flow the moment M of the aerodynamic forces, which depend on V (2.3), will be 

specified by formula (2.2) in which the constants mj (j = 0, 1, 2), m' and m" and the functions Ii(t) 
(i = 1, 2) are replaced, respectively, by the quantities 

m j ( t )  = (1 + I x y j ( t ) ) m j ,  m ' ( t )  = (1 + ~ t ¥ ' ( t ) ) m '  
(2.4) 

t~"(t) = (l+l*~"(t))m", l i ( t )  = ( l  + ixZ i ( t ) ) l i ( t )  

where the functions Vj(t), W'(t), ~'(t), Hi(t) ~ lpe(T, 7). 
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We will write the equation of the rotational motions of the plate in the form of the system (x 1 = O, 
X 2 = O)  

- ~  = Z a j x j  + K j ( t -  s ) x j ( s ) d s  + I,t K~(t, s)xj(s)ds + a}(t)xj + l l @ ( t )  + F 
i-- L2L o ',o 

d x  2 
~ -~ X 1 dt  

(2.5) 

in which, based on formulae (2.1), (2.2) and (2.4) 

a I = ( m l + I i ( O ) ) l l ,  a2 = ( r a g x o s i n O o + m g y o c o s O o - l + m 2 + 1 2 ( O ) ) l l  

a]( t )  = a l~ | ( t ) ,  a'2(t) = (m 2 + I2 (0) )~2( t )11  

Ki(t ) = ( d l l ( t ) l d t ) l l ,  K2(t) = ( d l 2 ( t ) l d t + L ' ( t ) ) l l  

K'l(t, s) = K l ( t - s ) x l ( t ) ,  K'2(t, s) = K2( t - s )~2( t )  + L"(t, s) 

dp(t) = (mo~o(t)+{p'(t))ll ,  F = F 2 + F  3+F' 
(2.6) 

t t  

= If  (t, s l, s2)x2(s t )x2(s2)ds lds2]  F 2 rag(xoCOSOo - YoslnOo)X2 + 

oo 

1 [ - - . 3  - , 3  1 . . ~  3 
F 3 = ~Lm x I + m x 2 - ~ m g t x o s m v  0 + YoCOS00)x2 + 

' "  ] 
+ ~fK(3)(  t, $1' $2' $3)x2(Sl)X2(s2)x2($3)d$1d$2d$3 

0 0 0  

where m g  is the weight of the body, I is its moment of inertia about the axis of rotation passing through 
the point O, and F'  is the set of terms of higher than the third order. The functions q~'(t), L"(t ,  s), 
K(2)(t, sl, s2) and K(3)(t, Sl, s2, s3), which are not given in detail here, are found from formula (2.1). 

It is easy to construct expressions for these, for example, in the special case [3, p. 607] when the integral kernels 
in (2.1) have the following structure 

2k+ 1 

L(2k+l)(sl 'S2 . . . . .  S2k+l)  = /2k+l  H L(Si) ,  /2k+l = cons t ,  k = 1,2 . . . .  
i=l  

and relation (2.1) then takes the form 

~---~. -2i+1 
L = - l O ' + y ' +  ,~t2i+ly ~ - l O ' + y ' + y 3 S ( y )  

i= l  

! t 

y' = ~ c ( t - s ) O ' ( s ) a s ,  ~ = ~L( t - s )O' ( s )a ,  
0 0 

where S(~) is a holomorphic function. In particular, if O0 = O, we have 

(p'(t)=-O, L"(t,s)-O, K(2)(t, Sl, S2)-O 

and the integral term in the expression for F 3 (2.6) is reduced to the form 13~3/I. 

We will assume that the integral kernels Kj(t) (j = 1, 2) (2.6) satisfY inequality (1.2). Terms of order 
~t, linear in xj, will be assumed to be the perturbation in Eqs (2.5). The function q~'(t) can be represented 
in the form q)'(t) = c'  + % ( 0 ,  where c' = const and % ( 0  ~ e(-7') for certain 7' > 0, the function 
• (t) ~ lpe(T, -7) and all the integral kernels K(k)(t, sl, . . . ,  Sk) ~ e'k(-~O). 
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For the unperturbed equation (2.5) we will set up the characteristic equation 

d ( k )  - ~,2 _ al ~, _ a 2  _ L K ~ ' ( k )  - K ~ ' ( ~ )  = 0 (2.7) 

where K*(~) is the Laplace transform for the function Ki(t) (i = 1, 2). 
Suppose the characteristic equation (2.7) has a finite number of roots ~.j (j = 1 . . . . .  L) in the complex 

half-plane RO. > -[3' and RO.j < 0. Then condition (1.12) is satisfied. By virtue of the assumptions 
made in this section the theorem of Section 1 holds for Eqs (2.5) and (2.6) and, consequently, under 
the effect of the periodic part of the perturbation of the flow in the limit periodic vibrations of the wing 
will become established. These periodic vibrations, by Eq. (1.14), correspond to the periodic solution 
of the equation 

t~ 

= al(1 + bt¥1p(t))~ + (a 2 + Ixa'2p(t))O + I[(Kl(S) + IIKl(t, s ) ) ~ ( t -  s) + 
0 

+ (K2(t, s) + ~tK2(t, s))O(t - s) ]ds + ~tdPp(t) + F 

(2.8) 

where, in all the integrals occurring in F, the upper limits of integration of t are replaced by oo. In Eq. 
(2.8) and, consequently, in formulae (2.6) the functions ~t(t), Z(t) with different subscripts, and also 
O.(t), are replaced by ~¢p(t), Zp(t) respectively with same subscripts and ~.(t),  i.e. by the periodic parts 
o(these functions. Moreover, in Eq. (2.8) -Ki(t, s) are functions into whicfa the integral kernels K~(t, s) 
(i = 1, 2) transform. 

In the first approximation, the periodic solution of Eq. (2.8) has the form 

1)(l)(t) = ~t f x21(s)dPp(t- s)ds (2.9) 

0 

where x21(t ) is an element of the fundamental matrix X(t) = (xiy(t)) (i, j = 1, 2) in inequality (1.12). 
Solution (2.9) can be sought in another form [6, 7], if the function Op(t) can be represented by an 

absolutely convergent Fourier series, so that 

2x (2.10) dpp(t) = ]~ (bksin(ktot)+ckcos(ktot)), to = .~  
k=O 

Then, specifying the required function 0(1)(0 by a Fourier series of the form (2.10) with coefficients 
b~ and c~, to determine these constants for each k we will have a system of linear algebraic equations, 
the determinant of which is equivalent to the quantity d(ikto) in relation (2.7) and is non-zero for all k 
by virtue of the assumption made that there are no pure imaginary roots in the characteristic equation. 
Consequently, this series can be constructed and will be absolutely convergent together with the Fourier 
series for the first and second derivatives, provided the function tI)(t) possesses, for example, a piecewise- 
continuous first derivative. 

Using formulae (2.6) for the non-linear terms, we can calculate the third approximation of the periodic 
mode, which satisfies Eq. (2.8) (up to terms of the order of ~t 3 inclusive). 

The rate at which the limit periodic solutions tend to periodic solutions is determined by the real 
parts of the roots of the characteristic equation and the exponents in the integral kernels, and also in 
the limit periodic functions, by which the perturbation is specified. 

We will consider the example of the analytical determination of an estimate for these real parts and thereby of 
the quantity t~ in inequality (1.12). Suppose 

li(t ) = di lexp(-Tlt)+dnexp(-T2t) ,  do = const ,  )'i = c o n s t > 0 ,  i , j  = 1 , 2  ( 2 . 1 1 )  

Taking representation (2.11) into account, we write characteristic equation (2.7) in the form 

2 2- i  
~ ' 2 - a l ~ ' - a 2 +  E dqTJ~" = 0 

i,j= l yj-F ~. 
(2.12) 
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We will estimate the roots of Eq. (2.12) assuming that 

d o = I.t~lij, 0<la ,~  1, i , j  = 1,2 (2.13) 

and the values of 7i are fairly high and that the Routh-Hurwitz conditions are satisfied, i.e. all the roots £k (k = 1, 
2, 3, 4) (numbered in order of increase of the real part) lie in the left half-plane. We will represent ~.k in the form 

Xt = ~ ~,~p)pr, (2.14) 
p=O 

We have 

• (0)  = 1 2 _2 . /3-TST,  _ ReX~°)2 < 0, ,2 a,<0, a2<0 

We will consider the case of the complex-conjugate quantities 7v~ °), 7v~ °) and we will obtain the constant u0 for 
the estimate I Re~.ll > u0. To do this we will obtain the upper limit for the moduli of the roots 7v3 and 7v4 of 
Eq. (2.12). We will denote by vj(~t) (a~j(0) = 0,j' = 3, 4) the series, which majorize the power series in bt for the 
quantities ~ -  ~9), in which we put, corresponding to Eq. (2.12), reduced to polynomial form, ;L(j °) = -~_ 2 (72 > "/1). 
To obtain a~3(bt ) we introduce the majorizing equation 

2 
b, ffi 1 2 ' t , - a d v 3 +  v~÷~t  ~ (~,, ÷ o3)2-( la''l ' Id'd 2/ 

1)3 + bo - 1)3) i= ,  (2.15) 

bo ---- ~2--~/1, b l  --.m ]T~+algl-all# 0 

To obtain an estimate in explicit form we will reinforce the m ajorizing equation (2.15), using the following 
majorants for terms that are independent of ~t, instead of a~3 and ~2 

b=ov3 b o Y 3  1)~ .,f _ _  

v 3 ~ bo - v""~3, b o -  v 3 

We will denote by D3, the least positive root of the new (quadratic) equation. Then 

12~31 < ~; + 03. (2.16) 

Proceeding in a similar way, we obtain the corresponding root v4* > 0 and estimate of the real root of Eq. (2.12) 

IX,I < ~ 2  + I )4 .  (2.17) 

On the basis of Eq. (2.12), reduced to polynomial form, we have 

I --~, ~'sl = - a ' + Y ' + Y 2  s (2.18) 

Since £1 + £2 = 2Re'a, using relations (2.16)-(2.18), we obtain the required estimate 

1 
IRe~,,I > u  0 = ~ ( - a ,  - 1)3, - 1 ) 4 . )  (2.19) 

In a similar way we can construct an estimate for I Reg.11 in the case when the integral kernels in representation 
(2.2) contain an arbitrary finite number of exponential functions and are specified by the formula 

P 

li(t) = !1 ~ di, exp(-7/t), d/s = const, ¥i = const 
s = !  

An est imate of  the type (2.19) enables us to avoid the numerical  de terminat ion  of  the roots  of  the 
characterist ic equation.  

In the more  general  problem of  the three-dimensional  motions of  a wing acted upon by an unsteady 
free airs t ream [10], the wing is represen ted  by a rigid body (a thin plate) with one  fixed point. The  
mount ing  of  the wing is model led  by a viscoelastic spring, and the stress-strain relat ionship is specified 
in the general  case by the Vol te r ra -Freche t  series (2.1). T he  system has three  degrees of  f reedom and 
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its motion is described by Volterra type integro-differential equations (1.1). The moments of the 
aerodynamic forces, taking into account the perturbation of the flow velocity, are given by formulae of 
the type (2.2) and (2.4). If the perturbation of the flow is described by exponentially limit periodic 
functions of time, then, according to the theorem proved above, limit periodic motions of the wing are 
established, which, as time passes, approach more and more to periodic. 
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